Generating Functions and Triangulations for Lecture Hall Cones
نویسندگان
چکیده
We show that Ln is isomorphic to the cone over the lattice pyramid of a reflexive simplex whose Ehrhart h∗-polynomial is given by the (n − 1)st Eulerian polynomial, and prove that lecture hall cones admit regular, flag, unimodular triangulations. After explicitly describing the Hilbert basis for Ln, we conclude with observations and a conjecture regarding the structure of unimodular triangulations of Ln, including connections between enumerative and algebraic properties of Ln and cones over unit cubes.
منابع مشابه
Lattice Point Generating Functions and Symmetric Cones
Abstract. We show that a recent identity of Beck–Gessel–Lee–Savage on the generating function of symmetrically contrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for the multivariate generating functions of such cones, and work out their general form more...
متن کاملLecture hall theorems, q-series and truncated objects
We show here that the refined theorems for both lecture hall partitions and anti-lecture hall compositions can be obtained as straightforward consequences of two q-Chu Vandermonde identities, once an appropriate recurrence is derived. We use this approach to get new lecture hall-type theorems for truncated objects. The truncated lecture hall partitions are sequences (λ1, . . . , λk) such that λ...
متن کاملEgoroff Theorem for Operator-Valued Measures in Locally Convex Cones
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملEhrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences
For a sequence s = (s1, . . . , sn) of positive integers, an s-lecture hall partition is an integer sequence λ satisfying 0 ≤ λ1/s1 ≤ λ2/s2 ≤ . . . ≤ λn/sn. In this work, we introduce s-lecture hall polytopes, s-inversion sequences, and relevant statistics on both families. We show that for any sequence s of positive integers: (i) the h∗-vector of the s-lecture hall polytope is the ascent polyn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 30 شماره
صفحات -
تاریخ انتشار 2016